Khudhair, Inteasar Yaseen
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

An Improved Hybrid GRU and CNN Models for News Text Classification Khudhair, Inteasar Yaseen; Majeed, Sundus Hatem; Ahmed, Ali Mohammed Saleh; Kadhim Alsaeedi, Mokhalad Abdulameer; Aswad, Firas Mohammed
JOIV : International Journal on Informatics Visualization Vol 9, No 1 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.1.2658

Abstract

 Due to the continuous growth and advancement of technology, an enormous volume of text data is generated daily across various sources including social media platforms, websites, search engines, healthcare records, and news articles. Extracting meaningful patterns from text data, such as viewpoints, related theories, journal distribution, facts, and the development of online news text, is a challenging task due to the varying lengths of the texts. One issue arises from the length of the text data itself, and another challenge lies in extracting valuable features, especially in news articles. In the deep learning models, the convolutional neural networks (CNNs) are capable of capturing local features in text data, but unable to capture the structural information or semantic relationships between words. Consequently, a sole CNN network often yields poor performance in text classification tasks, whereas the Gated Recurrent Unit (GRU) is adept at effectively extracting semantic information and understanding the global structural relationships present in textual data. This paper presents a solution to the problem by introducing a new text classification that integrates the strengths of CNN and GRU. The proposed hybrid models incorporate word vectorization and word dispersion in parallel. Initially, the model trains word vectors using the Word2vec model and then leverages the GRU model to capture semantic information from text sentences. Subsequently, the CNN method is employed to capture crucial semantic features, leading to classification using the SoftMax layer. Experimental findings demonstrated that the proposed hybrid GRU_CNN model outperformed and achieved accuracy 97.73% as compared to individual CNN, LSTM, and GRU models in terms of classification effectiveness and accuracy.