Putra, Tandra Adiyatma
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Building of Informatics, Technology and Science

Klasifikasi Penerima Bantuan Program Indonesia Pintar (PIP) Pada Siswa SMK Menggunakan Algoritma KNN, NBC dan C4.5 Putra, Tandra Adiyatma; Permana, Inggih; Zarnelly, Zarnelly; Megawati, Megawati
Building of Informatics, Technology and Science (BITS) Vol 6 No 4 (2025): March 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i4.6395

Abstract

The Indonesia Smart Program (PIP) is a government initiative aimed at providing educational assistance to students from underprivileged families. This research was conducted at SMKN 4 Pekanbaru to enhance the accuracy of distributing PIP aid using data mining methods. Three classification algorithms were used to identify students eligible for assistance: K-Nearest Neighbor (KNN), Naive Bayes Classifier (NBC), and C4.5. The data used in this study included attributes such as parental occupation, income, and the type of transportation used. The data processing involved cleaning, normalization, and splitting into test and training sets. The results showed that the KNN algorithm performed best with an accuracy of 84.20%, precision of 89.83%, and recall of 99.18%. The C4.5 algorithm excelled in model simplicity, while NBC showed less optimal results compared to KNN.