Dewi, Meidah
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : DoubleClick : Journal of Computer and Information Technology

Perbandingan Klasifikasi Data Diabetes Antara Metode Gaussian Naïve Bayes Dengan K-Nearest Neighbor Dewi, Meidah; Dianti, Dhea Rahma; Kawindra, Revalina; Kusumaputri, Aditya; Setiawan, Wahyudi
DoubleClick: Journal of Computer and Information Technology Vol. 8 No. 2 (2025): Edisi Februari 2025
Publisher : Universitas PGRI Madiun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25273/doubleclick.v8i2.20379

Abstract

Diabetes merupakan masalah kesehatan global serius dengan 422 juta penderita, sebagian besar di negara berpendapatan rendah dan menengah. Setiap tahun, sekitar 1,5 juta jiwa meninggal akibat diabetes. Teknik data mining, seperti algoritma Gausian Naïve Bayes dan K-Nearest Neighbor (K-NN), telah banyak digunakan untuk memprediksi risiko diabetes. Penelitian ini melalui tahapan eksplorasi data, pre-processing, dan modeling data. Dataset berasal dari NN CLF Diabetes Knightbearr. Setelah eksplorasi dan pre-processing untuk memastikan kualitas data, modeling dilakukan dengan algoritma Naïve Bayes dan K-NN. Naïve Bayes menunjukkan akurasi tinggi sebesar 97.12%, sedangkan K-NN, dengan K = 3, dan menunjukkan akurasi precision = 86%, recall= 90%, f1-score= 87%, dan keseluruhan sebesar 88.94%. Akurasi tinggi dari kedua algoritma ini menunjukkan potensi besar dalam membantu prediksi dan deteksi dini risiko diabetes, berkontribusi pada pengelolaan dan pencegahan penyakit ini di masa depan. Penelitian ini menegaskan pentingnya penerapan teknik data mining dalam bidang kesehatan untuk meningkatkan kualitas hidup penderita diabetes dan mengurangi angka kematian.