Jordan, Brilliant
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Building of Informatics, Technology and Science

Comparison of Convolutional Neural Network and Support Vector Machine for Student Question Classification in ChatGPT-based Learning Tools Jordan, Brilliant; Lhaksmana, Kemas Muslim
Building of Informatics, Technology and Science (BITS) Vol 7 No 2 (2025): September 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v7i2.7841

Abstract

Artificial Intelligence (AI) has revolutionized educational tools by enabling systems that proactively understand and respond to student needs. ChatGPT, a widely used generative model for education in Indonesia. However, it struggles to classify student questions accurately due to ambiguous phrasing, overlapping sentence structures, and difficulty recognizing intent, which limits its effectiveness as a learning assistant. This study compares the performance of Convolutional Neural Networks (CNN), which extract locally important features from word sequences with Support Vector Machines (SVM) in classifying student questions known for handling high-dimensional data and efficiently finding the optimal hyperplane for text classification. A dataset of 2,797 Indonesian ChatGPT interactions (71% clear vs. 29% unclear) was preprocessed through case folding, stop-word removal, stemming, and tokenisation, followed by data augmentation based on synonyms, which was applied to the minority class to balance the dataset. The models were tuned through grid or random search with prediction testing of the best model using 5-fold cross-validation comparisons across three data splits (70:30, 80:20, and 90:10). Results showed that CNN achieved balanced accuracy, precision, recall, and F1-score of 0.90 on the 90:10 split, outperforming SVM, which plateaued at 0.85 accuracy and dropped to 0.76 in F1-score. The embedded filters of the CNN found generality from lexical variation through the process of augmentation, while the TF-IDF sparse vectors in the SVM failed to maintain this level of semantics. These findings underscore that CNN is more adaptive to diverse data and better suited for integration into ChatGPT-based educational tools, particularly in supporting reliable classification and personalised AI feedback in student learning contexts.