Penyakit diabetes menjadi sorotan karena sifatnya yang kronis, dengan gejala utama berupa peningkatan kadar gula darah di atas batas normal. Diabetes terjadi ketika tubuh tidak dapat efisien mengambil glukosa ke dalam sel untuk diubah menjadi energi, menyebabkan penumpukan gula ekstra dalam aliran darah. Penelitian ini menggunakan ekstraksi fitur dengan Analisis Komponen Utama (Principal Component Analysis - PCA) dengan threshold 80%, menghasilkan 5 fitur utama. Fitur-fitur ini kemudian digunakan sebagai input untuk tiga classifier, yaitu K-Nearest Neighbors (KNN), Naive Bayes, dan Regresi Logistik. Data yang digunakan berasal dari Kaggle, dengan pembagian data 70:30 dan 80:20. Hasil penelitian menunjukkan bahwa metode Naive Bayes memberikan akurasi terbaik, mencapai 79% pada pembagian data 80:20. Oleh karena itu, dapat disimpulkan bahwa algoritma Naive Bayes adalah pilihan terbaik untuk klasifikasi data diabetes dalam penelitian ini.