Tee, Connie
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

Boosting Vehicle Classification with Augmentation Techniques across Multiple YOLO Versions Tan, Shao Xian; Ong, Jia You; Goh, Kah Ong Michael; Tee, Connie
JOIV : International Journal on Informatics Visualization Vol 8, No 1 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.1.2313

Abstract

In recent years, computer vision has experienced a surge in applications across various domains, including product and quality inspection, automatic surveillance, and robotics. This study proposes techniques to enhance vehicle object detection and classification using augmentation methods based on the YOLO (You Only Look Once) network. The primary objective of the trained model is to generate a local vehicle detection system for Malaysia which have the capacity to detect vehicles manufactured in Malaysia, adapt to the specific environmental factors in Malaysia, and accommodate varying lighting conditions prevalent in Malaysia. The dataset used for this paper to develop and evaluate the proposed system was provided by a highway company, which captured a comprehensive top-down view of the highway using a surveillance camera. Rigorous manual annotation was employed to ensure accurate annotations within the dataset. Various image augmentation techniques were also applied to enhance the dataset's diversity and improve the system's robustness. Experiments were conducted using different versions of the YOLO network, such as YOLOv5, YOLOv6, YOLOv7, and YOLOv8, each with varying hyperparameter settings. These experiments aimed to identify the optimal configuration for the given dataset. The experimental results demonstrated the superiority of YOLOv8 over other YOLO versions, achieving an impressive mean average precision of 97.9% for vehicle detection. Moreover, data augmentation effectively solves the issues of overfitting and data imbalance while providing diverse perspectives in the dataset. Future research can focus on optimizing computational efficiency for real-time applications and large-scale deployments.
Visual Analytic for Traffic Impact Assessment Chan, Jia Chun; Fahad, Nafiz; Goh, Kah Ong Michael; Tee, Connie
JOIV : International Journal on Informatics Visualization Vol 8, No 3 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.3.2314

Abstract

This study strives to promote the state of traffic impact assessment through high-end visual analytics by incorporating spatial and temporal data visualization to enhance traffic management. Based on a dataset on traffic flow at three major intersections, we married data cleaning, integration, and transformation to set out for a detailed visual analysis. Thus, the critical materials comprise the traffic count in multiple lanes, vehicle types, and saturation flow rates to understand the road network's capacity. They essentially explored the traffic volume variations daily and hourly and pattern identification using heat maps, parallel coordinate charts, and bar plots. Thus, the findings expose the remarkable traffic volume and pattern differences by distinguishing peak and off-peak hours on weekdays and weekends. The level of service at each junction was determined by the volume-to-capacity ratio, identifying potential congested areas. As such, this work points to the importance of further improvements to visual analytic techniques to accurately predict traffic patterns and evaluate traffic management strategies effectively. Predictive models based on visual analytic findings can pave the way for proactive traffic control and congestion mitigation, making urban traffic management more efficient and safer. The current study provides a scaffold for additional exploration of the above-detailed methods and their penal outcomes in urban development planning and policy provision in terms of developing sustainable traffic control strategies and real-time decision-making improvements.