Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Bulletin of Electrical Engineering and Informatics

Optimized colon cancer classification via feature selection and machine learning Haddou Bouazza, Sara; Haddou Bouazza, Jihad
Bulletin of Electrical Engineering and Informatics Vol 14, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i2.9270

Abstract

The increasing dimensionality of gene expression data poses significant challenges in cancer classification, particularly in colon cancer. This study presents a novel filtering approach (FA) and a gene classifier (GC) to enhance gene selection and classification accuracy. Utilizing a dataset of 62 samples, our methods integrate statistical measures and machine learning classifiers, achieving classification accuracies of 96% and 97%, respectively. The FA effectively filters out noise and redundancy, allowing for accurate predictions with a minimal subset of genes, while the GC leverages multiple classifiers for optimal performance. These findings underscore the importance of robust feature selection in improving cancer diagnostics and suggest potential applications in personalized medicine. By addressing the limitations of existing methodologies, our work lays the groundwork for future research in cancer genomics, emphasizing the need for adaptive strategies to handle complex datasets.