Ibrahimy, Muhammad I.
University Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Bulletin of Electrical Engineering and Informatics

Microstrip patch antenna with defected ground structure for biomedical application Islam, Md. Shazzadul; Ibrahimy, Muhammad I.; Motakabber, S. M. A.; Zakir Hossain, A. K. M.; Azam, S. M. Kayser
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v8i2.1495

Abstract

Proper narrowband antenna design for wearable devices in the biomedical application is a significant field of research interest. In this work, defected ground structure-based microstrip patch antenna has been proposed that can work for narrowband applications. The proposed antenna works exactly for a single channel of ISM band. The resonant frequency of the antenna is 2.45 GHz with a return loss of around -30 dB. The -10dB impedance bandwidth of the antenna is 20 MHz (2.442-2.462 GHz), which is the bandwidth of channel 9 in ISM band. The antenna has achieved a high gain of 7.04 dBi with an increase of 17.63% antenna efficiency in terms of realized gain by using defected ground structure. Three linear vector arrays of arrangement 1×2, 1×4 and 1×8 have been designed to validate the proposed antenna performances as an array. The proposed antenna is light weighted, low cost, easy to fabricate and with better performances that makes it suitable for biomedical WLAN applications.
Design and implementation of a series switching SPSI for PV cell to use in carrier based grid synchronous system Rahman, Tawfikur; Motakabber, S. M. A.; Ibrahimy, Muhammad I.; Zahirul Alam, A. H. M.
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v8i2.1507

Abstract

A carrier-based grid synchronous method is proposed to develop the system efficiency, phase and power quality of the inverter output waves. The operating principle of a single-phase phase synchronous inverter (SPSI) is introduced, with proper synchronous paid to the switching-frequency synchronizing voltage made by the interleaved process, as well as actual mitigation approaches. In the construction of the SPSI, input and output filters are electrically coupled with the two sides of an inverter. The inverter power electronic switches and other electrical components are operated by carrier-based grid synchronous controller (CBGSC) with PWM regulator. The SPSI is designed and implemented with the Toshiba 40WR21 IGBT, Digital Microcontroller pulse controller (DMPC) and 4N35 Optocoupler with a fundamental frequency of 50Hz. The other parameters are considered as load resistance, R_L = 11Ω, duty cycle, 85%, carrier frequency, 2.5kHz and input DC voltage,  ± 340V. In addition, LCL lowpass grid filters are used to convert squire wave to sine wave with required phase and frequency. Finally, the simulated and experimental results obtained with a carrier-based grid synchronous SPSI experimental prototype are exposed for justification, showing the phase error of 55% improvement, reduced 11% of THD and the conversion efficiency of 97.02% highly predicted by the proposed design technique to improve the microgrid system.