Abstrak. Misalkan graf G = (V;E) adalah graf terhubung. Kelas warna pada G dino-tasikan dengan Si, merupakan himpunan titik-titik yang berwarna i dengan 1 i k.Misalkan = fS1; S2; ; Skg merupakan partisi terurut dari V (G). Berdasarkan suatupewarnaan titik, maka representasi v terhadap disebut kode warna dari v, dinotasikandengan c(v). Kode warna c(v) dari suatu titik v 2 V (G) didenisikan sebagai k-vektor,c(v) = (d(v; S1); d(v; S2); ; d(v; Sk));dimana d(v; Si) = minfd(v; x)jx 2 Sig untuk 1 i k. Jika setiap titik yang berbeda diG memiliki kode warna yang berbeda untuk suatu , maka c disebut pewarnaan lokasidari G. Minimum dari banyaknya warna yang digunakan pada pewarnaan lokasi dari grafG disebut bilangan kromatik lokasi, dinotasikan L(G). Pada tulisan ini akan dibahasbilangan kromatik lokasi dari graf berlian Brn untuk n = 3 dan n = 4.Kata Kunci: Kelas Warna, Kode Warna, Bilangan Kromatik Lokasi, Graf Berlian
                        
                        
                        
                        
                            
                                Copyrights © 2018