Jurnal Matematika UNAND
Vol 8, No 1 (2019)

Bilangan Kromatik Lokasi pada Graf Prisma Berekor

Eka Rahayu Nengsih A (Unknown)
Des Welyyanti (Unknown)
Effendi Effendi (Unknown)



Article Info

Publish Date
05 Jul 2019

Abstract

Misalkan G = (V, E) suatu graf terhubung dan c suatu k-pewarnaan dari G. Kelas warna pada G adalah himpunan titik-titik yang berwarna i, dinotasikan dengan Si untuk 1 ≤ i ≤ k. Misalkan Π = {S1, S2, ..., Sk} adalah partisi terurut dari V (G) berdasarkan pewarnaan titik. Kode warna cΠ(v) dari suatu titik v ∈ V (G) didefinisikan sebagai vektor-k: cΠ(v) = (d(v, S1), d(v, S2), ..., d(v, Sk)) dimana d(v, Si) = min{d(v, x) | x ∈ Si)}, untuk 1 ≤ i ≤ k. Jika setiap titik yang berbeda di G memiliki kode warna yang berbeda untuk suatu Π, maka c disebut pewarnaan lokasi untuk G. Jumlah warna minimum yang digunakan pada pewarnaan lokasi dari graf G disebut bilangan kromatik lokasi untuk G, dinotasikan dengan χL(G). Pada penelitian ini akan dibahas tentang penentuan bilangan kromatik lokasi pada graf prisma berekor.Kata Kunci: Bilangan Kromatik Lokasi, Graf Prisma Berekor, Kode warna

Copyrights © 2019






Journal Info

Abbrev

jmua

Publisher

Subject

Computer Science & IT Mathematics

Description

Fokus dan Lingkup dari Jurnal Matematika FMIPA Unand meliputi topik-topik dalam Matematika sebagai berikut : Analisis dan Geometri Aljabar Matematika Terapan Matematika Kombinatorika Statistika dan Teori ...