Abstrak Salah satu model penunjang keputusan yang biasa digunakan oleh organisasi adalah prediksi dalam rentang waktu diskrit (klasifikasi). Dalam klasifikasi ada dua pekerjaan utama yang dilakukan, yaitu (1) pembangunan model basis pengetahuan sistem, dan (2) penggunaan model untuk melakukan pengenalan/prediksi kelas suatu objek data baru. Pada algoritma klasifikasi yang standar, umumnya model basis pengetahuan dihasilkan dari algoritma model (algoritma pelatihan), yang memiliki kelemahan yaitu data yang dimodelkan berdasarkan suatu teknik pemodelan tertentu cenderung dipaksa untuk masuk pada kelas tertentu yang sudah diset sebelumnya, sehingga sering terjadi sebuah objek kelas tidak mencerminkan sepenuhnya sifat dari kelas yang ada (tidak alami), berdampak pada proses klasifikasi menjadi kurang akurat.Pada penelitian ini diujicoba model Klasifikasi yang menggunakan Algoritma Klastering untuk pembentukan Kelas Model secara alami sebagai Basis Pengetahuan Sistem, sehingga dapat menyelesaikan permasalahan pada teknik pemodelan yang menghasilkan objek klas yang cenderung dipaksakan, sehingga menghasilkan proses klasifikasi yang lebih akurat.Kata Kunci: Klasifikasi, Klastering, Algoritma k-Nearest Neighbor Termodifikasi, Basis Pengetahuan
Copyrights © 2016