SENSITEK
2018: Proceeding Seminar Nasional Sistem Informasi dan Teknologi Informasi (SENSITEK)

Pengelompokan Artikel Bahasa Bali Menggunakan Algoritma K-Means Clustering

Ricky Aurelius Nurtanto Diaz (STIKOM Bali)



Article Info

Publish Date
31 Jul 2018

Abstract

Teks mining merupakan salah satu bidang data mining yang memiliki cukup banyak hal untuk diteliti, terutama karena Indonesia memiliki cukup banyak ragam bahasa dan tulisan-tulisan dalam bahasa daerah yang mempunyai ciri khas masing-masing. Dalam penelitian ini, akan dilakukan penelitian mengenai proses pencarian teks artikel yang tertulis dalam bahasa Bali. Digunakannya bahasa Bali  dalam penelitian ini karena keunikan yang dimiliki oleh bahasa Bali dimana terdapat banyak kata dengan bentuk yang sama namun bisa berbeda makna atau sebaliknya dengan makna yang sama namun berasal dari kata yang berbeda. Pemanfaatan teknik N-Gram Similarity merupakan proses awal pengenalan teks yang terdapat pada sebuah artikel. Hasil pengenalan teks kemudian disimpan dalam nilai variable key yang terus meningkat seiring dengan ditemukannya teks lain yang sesuai dan variabel noise untuk kumpulan teks yang tidak sesuai.  Hasil pengenalan teks ini kemudian akan dikelompokkan dengan menggunakan algoritma K-Means dan menghasilkan akurasi hingga 93%. Proses ini dapat menjadi dasar dalam penelitian berikutnya untuk pencarian artikel bahasa daerah menggunakan teknik semantik search. Kata kunci: clustering, k-means, artikel, bahasa, bali

Copyrights © 2018






Journal Info

Abbrev

sensitek

Publisher

Subject

Computer Science & IT

Description

Dalam rangka meningkatkan minat publikasi ilmiah di kalangan akademisi maupun praktisi dibidang teknologi informasi dan multimedia, STMIK Pontianak menyelenggarakan Seminar Nasional Sistem Informasi dan Teknologi Informasi (SENSITEK) 2018. ...