‎‎Let $G$ be a simple graph with vertex set $V(G)=\{v_1‎, ‎v_2‎, ‎\cdots‎, ‎v_n\}$ ‎and‎‎edge set $E(G)$‎.‎The signless Laplacian matrix of $G$ is the matrix $‎Q‎‎=‎D‎+‎A‎‎$‎, ‎such that $D$ is a diagonal ‎matrix‎%‎‎, ‎indexed by the vertex set of $G$ where‎‎%‎$D_{ii}$ is the degree of the vertex $v_i$ ‎‎‎ and $A$ is the adjacency matrix of $G$‎.‎%‎ where $A_{ij} = 1$ when there‎‎%‎‎is an edge from $i$ to $j$ in $G$ and $A_{ij} = 0$ otherwise‎.‎The eigenvalues of $Q$ is called the signless Laplacian eigenvalues of $G$ and denoted by $q_1$‎, ‎$q_2$‎, ‎$\cdots$‎, ‎$q_n$ in a graph with $n$ vertices‎.‎In this paper we characterize all trees with four and five distinct signless Laplacian ‎eigenvalues.‎‎‎
Copyrights © 2019