Jurnal ULTIMATICS
Vol 11 No 1 (2019): Ultimatics : Jurnal Teknik Informatika

Klasifikasi Anjing dan Kucing menggunakan Algoritma Linear Discriminant Analysis dan Support Vector Machine

Alethea Suryadibrata (Universitas Multimedia Nusantara)
Suryadi Darmawan Salim (Unknown)



Article Info

Publish Date
30 Aug 2019

Abstract

One of the factors driving technological development is the increase in computers ability to complete various jobs. One of them is doing image processing, which is widely used in our daily life, such as the use of fingerprints, face/iris recognition barcodes, medical needs, and various other uses. Classification is one of the applications of image processing that is used the most. One algorithm that can be used for the development of image classification systems is Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM). LDA is a feature extraction algorithm to find a subspace that separates classes well. SVM is a classification algorithm, based on the idea of finding a hyperplane that best divides a dataset into classes. In this study, LDA and SVM algorithms were tested on the dog and cat classification system, with the highest F-score calculation results being 0.69 with 200 training data and 50 testing data for cats and 0.64 with 200 training data and 30 testing data for dogs.

Copyrights © 2019






Journal Info

Abbrev

TI

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering

Description

Jurnal ULTIMATICS merupakan Jurnal Program Studi Teknik Informatika Universitas Multimedia Nusantara yang menyajikan artikel-artikel penelitian ilmiah dalam bidang analisis dan desain sistem, programming, algoritma, rekayasa perangkat lunak, serta isu-isu teoritis dan praktis yang terkini, mencakup ...