Majalah Kulit, Karet, dan Plastik
Vol 35, No 2 (2019): Majalah Kulit, Karet, dan Plastik

The preparation of dual-functional hydrogel as the surface coating of plastics in biomedical applications

Nan Zhao (Unknown)
Bidhari Pidhatika (Center for Leather, Rubber, and Plastic, Jl. Sokonandi No. 9 Yogyakarta)



Article Info

Publish Date
15 Jan 2020

Abstract

Poly(2-ethyl-2-oxazoline) (PEOXA) is among polymers that have been reported to show anti-adhesive (bio-passive) behavior in numerous biomaterial applications. This work aimed to develop dual-functional hydrogel coatings, with PEOXA as hydrophilic polymer and benzophenone as cross-linker. PEOXA was partially hydrolyzed in acidic conditions to form PEOXA-m% EI that contains ethyleneimine (EI) groups. The EI groups were used as conjugation sites for incorporation of benzophenone (BP) molecules to PEOXA chains to form PEOXA-m% EIBP. Thin films of surface-attached polymer networks were generated from PEOXA-m% EIBP copolymers composed of PEOXA as platform and benzophenone as crosslinker units. The polymer became crosslinked through benzophenone units and forms a hydrogel as biopassive platform during irradiation with ultraviolet (UV) light. Laminin was incorporated into biopassive polymer network to allow for preparation of dual-functional hydrogel. NMR spectra indicated successful control of PEOXA partial hydrolysis and conjugation of benzophenone molecules to PEOXA chains. Ellipsometry and ATR-FTIR results showed that wavelength of UV light during C, H-insertion reaction influences stability of polymer network (hydrogel) on the substrate surface. XPS spectra verified that a stable film could be generated using suitable UV light during preparation of polymer network. Cell culture study on laminin/PEOXA-coated PMAA plastics showed dual-functional properties.

Copyrights © 2019






Journal Info

Abbrev

MKKP

Publisher

Subject

Engineering

Description

Majalah Kulit, Karet, dan Plastik (Journal of Leather, Rubber, and Plastics) publishes original research focused on materials, processes, and waste management in the field of leather, rubber, and plastics. ...