International Journal of Electrical and Computer Engineering
Vol 6, No 6: December 2016

EEG Based Eye State Classification using Deep Belief Network and Stacked AutoEncoder

Sanam Narejo (Politecnico Di Torino)
Eros Pasero (Politecnico Di Torino)
Farzana Kulsoom (University of Pavia)



Article Info

Publish Date
01 Dec 2016

Abstract

A Brain-Computer Interface (BCI) provides an alternative communication interface between the human brain and a computer. The Electroencephalogram (EEG) signals are acquired, processed and machine learning algorithms are further applied to extract useful information.  During  EEG acquisition,   artifacts  are induced due to involuntary eye movements or eye blink, casting adverse effects  on system performance. The aim of this research is to predict eye states from EEG signals using Deep learning architectures and present improved classifier models. Recent studies reflect that Deep Neural Networks are trending state of the art Machine learning approaches. Therefore, the current work presents the implementation of  Deep Belief Network (DBN) and Stacked AutoEncoders (SAE) as Classifiers with encouraging performance accuracy.  One of the designed  SAE models outperforms the  performance of DBN and the models presented in existing research by an impressive error rate of 1.1% on the test set bearing accuracy of 98.9%. The findings in this study,  may provide a contribution towards the state of  the  art performance on the problem of  EEG based eye state classification.

Copyrights © 2016






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...