International Journal of Electrical and Computer Engineering
Vol 5, No 6: December 2015

Feature Reduction in Clinical Data Classification using Augmented Genetic Algorithm

Srividya Sivasankar (Amrita Vishwa Vidyapeetha)
Sruthi Nair (Amrita Vishwa Vidyapeetha)
M.V Judy (Amrita Vishwa Vidyapeetha)



Article Info

Publish Date
01 Dec 2015

Abstract

In clinical data, we have a large set of diagnostic feature and recorded details of patients for certain diseases. In a clinical environment a doctor reaches a treatment decision based on his theoretical knowledge, information attained from patients, and the clinical reports of the patient. It is very difficult to work with huge data in machine learning; hence to reduce the data, feature reduction is applied. Feature reduction has gained interest in many research areas which deals with machine learning and data mining, because it enhances the classifiers in terms of faster execution, cost-effectiveness, and accuracy. Using feature reduction we intend to find the relevant features of the data set. In this paper, we have analyzed Modified GA (MGA), PCA and combination of PCA and Modified Genetic algorithm for feature reduction. We have found that correctly classified rate of combination of PCA and Modified Genetic algorithm higher compared to other feature reduction method.

Copyrights © 2015






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...