International Journal of Electrical and Computer Engineering
Vol 9, No 3: June 2019

Demand-driven Gaussian window optimization for executing preferred population of jobs in cloud clusters

Vaidehi M (Dayananda Sagar College of Engineering)
T. R. Gopalakrishnan (Rajarajeshwari College of Engineering)



Article Info

Publish Date
01 Jun 2019

Abstract

Scheduling is one of the essential enabling technique for Cloud computing which facilitates efficient resource utilization among the jobs scheduled for processing. However, it experiences performance overheads due to the inappropriate provisioning of resources to requesting jobs. It is very much essential that the performance of Cloud is accomplished through intelligent scheduling and allocation of resources. In this paper, we propose the application of Gaussian window where jobs of heterogeneous in nature are scheduled in the round-robin fashion on different Cloud clusters. The clusters are heterogeneous in nature having datacenters with varying sever capacity. Performance evaluation results show that the proposed algorithm has enhanced the QoS of the computing model. Allocation of Jobs to specific Clusters has improved the system throughput and has reduced the latency.

Copyrights © 2019






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...