International Journal of Electrical and Computer Engineering
Vol 6, No 6: December 2016

Face Detection in a Mixed-Subject Document

Lhoussaine Bouhou (Sultan Moulay Slimane University)
Rachid El Ayachi (Sultan Moulay Slimane University)
Mohamed Baslam (Sultan Moulay Slimane University)
Mohamed Oukessou (Sultan Moulay Slimane University)



Article Info

Publish Date
01 Dec 2016

Abstract

Before you recognize anyone, it is essential to identify various characteristics variations from one person to another. among of this characteristics, we have those relating to the face. Nowadays the detection of skin regions in an image has become an important research topic for the location of a face in the image. In this research study, unlike previous research studies  related  to  this  topic  which  have  focused  on  images  inputs  data  faces,  we  are  more interested to the fields face detection in mixed-subject documents (text + images). The face detection system developed is based on the hybrid method to distinguish two categories of objects from the mixed document. The first category is all that is text or images containing figures having no skin color, and the second category is any figure with the same color as the skin. In the second phase the detection system is based on Template Matching method to distinguish among the figures of the second category only those that contain faces to detect them. To validate this study, the system developed is tested on the various documents which including text and image.

Copyrights © 2016






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...