International Journal of Electrical and Computer Engineering
Vol 7, No 5: October 2017

SVM Classification of MRI Brain Images for Computer-Assisted Diagnosis

Madina Hamiane (Ahlia University, Manama, Bahrain)
Fatema Saeed (Ahlia University, Manama, Bahrain)



Article Info

Publish Date
01 Oct 2017

Abstract

Magnetic Resonance Imaging is a powerful technique that helps in the diagnosis of various medical conditions. MRI Image pre-processing followed by detection of brain abnormalities, such as brain tumors, are considered in this work. These images are often corrupted by noise from various sources. The Discrete Wavelet Transforms (DWT) with details thresholding is used for efficient noise removal followed by edge detection and threshold segmentation of the denoised images. Segmented image features are then extracted using morphological operations. These features are finally used to train an improved Support Vector Machine classifier that uses a Gausssian radial basis function kernel. The performance of the classifier is evaluated and the results of the classification show that the proposed scheme accurately distinguishes normal brain images from the abnormal ones and benign lesions from malignant tumours. The accuracy of the classification is shown to be 100% which is superior to the results reported in the literature.

Copyrights © 2017






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...