International Journal of Electrical and Computer Engineering
Vol 9, No 5: October 2019

Biological landmark Vs quasi-landmarks for 3D face recognition and gender classification

Hawraa H. Abbas (Kerbala University)
Ammar A. Altameemi (Kerbala University)
Hameed R. Farhan (Kerbala University)



Article Info

Publish Date
01 Oct 2019

Abstract

Face recognition and gender classification are vital topics in the field of computer graphic and pattern recognition. We utilized ideas from two growing ideas in computer vision, which are biological landmarks and quasi-landmarks (dense mesh) to propose a novel approach to compare their performance in face recognition and gender classification. The experimental work is conducted on FRRGv2 dataset and acquired 98% and 94% face recognition accuracies using the quasi and biological landmarks respectively. The gender classification accuracies are 92% for quasi-landmarks and 90% for biological landmarks.

Copyrights © 2019






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...