International Journal of Electrical and Computer Engineering
Vol 7, No 4: August 2017

EV-SIFT - An Extended Scale Invariant Face Recognition for Plastic Surgery Face Recognition

Archana H. Sable (Swami Ramanand Teerth Marathwada University, Nanded, India)
Sanjay N. Talbar (Shri Guru Gobingji Singh Institute of Engg. & Tech, India)
Haricharan Amarsing Dhirbasi (Swami Ramanand Teerth Marathwada University, Nanded, India)



Article Info

Publish Date
01 Aug 2017

Abstract

Automatic recognition of people faces many challenging problems which has experienced much attention due to many applications in different fields during recent years. Face recognition is one of those challenging problem which does not have much technique to solve all situations like pose, expression, and illumination changes, and/or ageing. Facial expression due to plastic surgery is one of the additional challenges which arise recently. This paper presents a new technique for accurate face recognition after the plastic surgery. This technique uses Entropy based SIFT (EV-SIFT) features for the recognition purpose. The corresponding feature extracts the key points and volume of the scale-space structure for which the information rate is determined. This provides least effect on uncertain variations in the face since the entropy is the higher order statistical feature. The corresponding EV-SIFT features are applied to the Support vector machine for classification. The normal SIFT feature extracts the key points based on the contrast of the image and the V- SIFT feature extracts the key points based on the volume of the structure. But the EV- SIFT method provides the contrast and volume information. This technique provides better performance when compare with PCA, normal SIFT and V-SIFT based feature extraction.

Copyrights © 2017






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...