International Journal of Electrical and Computer Engineering
Vol 8, No 6: December 2018

Comparative Study of Classification Method on Customer Candidate Data to Predict its Potential Risk

Mujiono Sadikin (Universitas Mercu Buana)
Fahri Alfiandi (Universitas Mercu Buana)



Article Info

Publish Date
01 Dec 2018

Abstract

Leasing vehicles are a company engaged in the field of vehicle loans. Purchase by way of credit becomes a mainstay because it can attract potential customers to generate more profit. But if there is a mistake in approving a customer candidate, the risk of stalled credit payments can happen. To minimize the risk, it can be applied the certain data mining technique to predict the future behavior of the customers. In this study, it is explored in some data mining techniques such as C4.5 and Naive Bayes for this purpose. The customer attributes used in this study are: salary, age, marital status, other installments and worthiness. The experiments are performed by using the Weka software. Based on evaluation criteria, i.e. accuracy, C4.5 algorithm outperforms compared to Naive Bayes. The percentage split experiment scenarios provide the precision value of 89.16% and the accuracy value of 83.33% wheres the cross validation experiment scenarios give the higher accuracy values of all used k-fold. The C4.5 experiment results also confirm that the most influential instant data attribute in this research is the salary.

Copyrights © 2018






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...