International Journal of Electrical and Computer Engineering
Vol 9, No 1: February 2019

Content-aware resource allocation model for IPTV delivery networks

Suliman M. Fati (INTI International university)
Putra Sumari (Universiti Sains Malaysia)
Choo Wou Onn (INTI International university)



Article Info

Publish Date
01 Feb 2019

Abstract

Nowadays, with the evolution of digital video broadcasting, as well as, the advent of high speed broadband networks, a new era of TV services has emerged known as IPTV. IPTV is a system that employs the high speed broadband networks to deliver TV services to the subscribers. From the service provider viewpoint, the challenge in IPTV systems is how to build delivery networks that exploits the resources efficiently and reduces the service cost, as well. However, designing such delivery networks affected by many factors including choosing the suitable network architecture, load balancing, resources waste, and cost reduction. Furthermore, IPTV contents characteristics, particularly; size, popularity, and interactivity play an important role in balancing the load and avoiding the resources waste for delivery networks. In this paper, we investigate the problem of resource allocation for IPTV delivery networks over the recent architecture, peer-service area architecture. The Genetic Algorithm as an optimization tool has been used to find the optimal provisioning parameters including storage, bandwidth, and CPU consumption. The experiments have been conducted on two data sets with different popularity distributions. The experiments have been conducted on two popularity distributions. The experimental results showed the impact of content status on the resource allocation process.

Copyrights © 2019






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...