International Journal of Electrical and Computer Engineering
Vol 8, No 1: February 2018

Optimized Kernel Extreme Learning Machine for Myoelectric Pattern Recognition

Khairul Anam (University of Jember)
Adel Al-Jumaily (University of Technology Sydney)



Article Info

Publish Date
01 Feb 2018

Abstract

Myoelectric pattern recognition (MPR) is used to detect user’s intention to achieve a smooth interaction between human and machine. The performance of MPR is influenced by the features extracted and the classifier employed. A kernel extreme learning machine especially radial basis function extreme learning machine (RBF-ELM) has emerged as one of the potential classifiers for MPR. However, RBF-ELM should be optimized to work efficiently. This paper proposed an optimization of RBF-ELM parameters using hybridization of particle swarm optimization (PSO) and a wavelet function. These proposed systems are employed to classify finger movements on the amputees and able-bodied subjects using electromyography signals. The experimental results show that the accuracy of the optimized RBF-ELM is 95.71% and 94.27% in the healthy subjects and the amputees, respectively. Meanwhile, the optimization using PSO only attained the average accuracy of 95.53 %, and 92.55 %, on the healthy subjects and the amputees, respectively. The experimental results also show that SW-RBF-ELM achieved the accuracy that is better than other well-known classifiers such as support vector machine (SVM), linear discriminant analysis (LDA) and k-nearest neighbor (kNN).

Copyrights © 2018






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...