International Journal of Electrical and Computer Engineering
Vol 9, No 3: June 2019

Prediction of Answer Keywords using Char-RNN

Pratheek I (Christ University)
Joy Paulose (Christ University)



Article Info

Publish Date
01 Jun 2019

Abstract

Generating sequences of characters using a Recurrent Neural Network (RNN) is a tried and tested method for creating unique and context aware words, and is fundamental in Natural Language Processing tasks. These type of Neural Networks can also be used a question-answering system. The main drawback of most of these systems is that they work from a factoid database of information, and when queried about new and current information, the responses are usually bleak. In this paper, the author proposes a novel approach to finding answer keywords from a given body of news text or headline, based on the query that was asked, where the query would be of the nature of current affairs or recent news, with the use of Gated Recurrent Unit (GRU) variant of RNNs. Thus, this ensures that the answers provided are relevant to the content of query that was put forth.

Copyrights © 2019






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...