International Journal of Electrical and Computer Engineering
Vol 8, No 1: February 2018

Solar Photovoltaic Power Forecasting in Jordan using Artificial Neural Networks

Mohammad H. Alomari (Applied Science Private University)
Jehad Adeeb (Applied Science Private University)
Ola Younis (University of Liverpool)



Article Info

Publish Date
01 Feb 2018

Abstract

In this paper, Artificial Neural Networks (ANNs) are used to study the correlations between solar irradiance and solar photovoltaic (PV) output power which can be used for the development of a real-time prediction model to predict the next day produced power. Solar irradiance records were measured by ASU weather station located on the campus of Applied Science Private University (ASU), Amman, Jordan and the solar PV power outputs were extracted from the installed 264KWp power plant at the university. Intensive training experiments were carried out on 19249 records of data to find the optimum NN configurations and the testing results show excellent overall performance in the prediction of next 24 hours output power in KW reaching a Root Mean Square Error (RMSE) value of 0.0721. This research shows that machine learning algorithms hold some promise for the prediction of power production based on various weather conditions and measures which help in the management of energy flows and the optimisation of integrating PV plants into power systems.

Copyrights © 2018






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...