International Journal of Electrical and Computer Engineering
Vol 7, No 3: June 2017

Dynamic Modelling of Aerobic Granular Sludge Artificial Neural Networks

Nurazizah Mahmod (Universiti Teknologi Malaysia, 81310 Skudai Johor Bahru, Malaysia)
Norhaliza Abdul Wahab (Universiti Teknologi Malaysia, 81310 Skudai Johor Bahru, Malaysia)



Article Info

Publish Date
01 Jun 2017

Abstract

Aerobic Granular Sludge (AGS) technology is a promising development in the field of aerobic wastewater treatment system. Aerobic granulation usually happened in sequencing batch reactors (SBRs) system. Most available models for the system are structurally complex with the nonlinearity and uncertainty of the system makes it hard to predict. A reliable model of AGS is essential in order to provide a tool for predicting its performance. This paper proposes a dynamic neural network approach to predict the dynamic behavior of aerobic granular sludge SBRs. The developed model will be applied to predict the performance of AGS in terms of the removal of Chemical Oxygen Demand (COD). The simulation uses the experimental data obtained from the sequencing batch reactor under three different conditions of temperature (30˚C, 40˚C and 50˚C). The overall results indicated that the dynamic of aerobic granular sludge SBR can be successfully estimated using dynamic neural network model, particularly at high temperature.

Copyrights © 2017






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...