International Journal of Electrical and Computer Engineering
Vol 2, No 6: December 2012

Rain Attenuation Modelling and Mitigation in The Tropics: Brief Review

Abayomi Isiaka Yussuff (Lagos State University, Lagos-Nigeria. Universiti Teknologi Malaysia, Malaysia.)
Nor Hisham Khamis (Universiti Teknologi Malaysia, Malaysia.)



Article Info

Publish Date
01 Dec 2012

Abstract

This paper is a brief review of Rain AttenuationModelling and Mitigation in the Tropics. The fast depleting availability of the lower frequency bands like the Ku-band as a result of congestion by commercial satellite operations coupled with severe rain attenuations experienced at higher frequency bands (Ka and Q/V), particularly in the tropical regions which was caused by higher rainfall rates and bigger raindrop size, amongst others; it was pertinent that deliberate effforts be geared towards research along this direction. This became even more critical owing to a dearth database along the slant path in the tropical regions for use in rain propagation studies at microwave frequencies, especially at millimeter wave bands (where most signal depolarization and fading takes place). The results presented in this work are valuable for design and planning of the satellite link, particularly in the tropical regions.DAH, ITU-R and SAM model simulations along the slant-path were investigated using local rainfall data at 0.01% of the time, while making use of TRMM data from NigComSat-1 satellite to obtain the measured data for Lagos. Terrestrial attenuation data for 0.01% of the time for UTM were obtained from the UTM wireless communication center (WCC). The attenuation data were thereafter transformed to slant path using transformation technique proposed for Ku band byA. Y. Abdulrahman. Theattenuation exceeded for other percentages of the average year was obtained using statistical interpolation extrapolation method.It was observed that the proposed model predicts creditably well for the ka down link frequency band, by producing the best performance when compared with SAM, DAH and ITU-R models.DOI:http://dx.doi.org/10.11591/ijece.v2i6.1222

Copyrights © 2012






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...