International Journal of Electrical and Computer Engineering
Vol 7, No 5: October 2017

Hybrid Method HVS-MRMR for Variable Selection in Multilayer Artificial Neural Network Classifier

Ben-Hdech Adil (Moulay Ismail University, Meknes, Morocco)
Ghanou Youssef (Moulay Ismail University, Meknes, Morocco)
El Qadi Abderrahim (Mohammed V University, Rabat, Morocco)



Article Info

Publish Date
01 Oct 2017

Abstract

The variable selection is an important technique the reducing dimensionality of data frequently used in data preprocessing for performing data mining. This paper presents a new variable selection algorithm uses the heuristic variable selection (HVS) and Minimum Redundancy Maximum Relevance (MRMR). We enhance the HVS method for variab le selection by incorporating (MRMR) filter. Our algorithm is based on wrapper approach using multi-layer perceptron. We called this algorithm a HVS-MRMR Wrapper for variables selection. The relevance of a set of variables is measured by a convex combination of the relevance given by HVS criterion and the MRMR criterion. This approach selects new relevant variables; we evaluate the performance of HVS-MRMR on eight benchmark classification problems. The experimental results show that HVS-MRMR selected a less number of variables with high classification accuracy compared to MRMR and HVS and without variables selection on most datasets. HVS-MRMR can be applied to various classification problems that require high classification accuracy.

Copyrights © 2017






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...