International Journal of Electrical and Computer Engineering
Vol 8, No 4: August 2018

Evaluation of a Multiple Regression Model for Noisy and Missing Data

Chanintorn Jittawiriyanukoon (Assumption University)



Article Info

Publish Date
01 Aug 2018

Abstract

The standard data collection problems may involve noiseless data while on the other hand large organizations commonly experience noisy and missing data, probably concerning data collected from individuals. As noisy and missing data will be significantly worrisome for occasions of the vast data collection then the investigation of different filtering techniques for big data environment would be remarkable. A multiple regression model where big data is employed for experimenting will be presented. Approximation for datasets with noisy and missing data is also proposed. The statistical root mean squared error (RMSE) associated with correlation coefficient (COEF) will be analyzed to prove the accuracy of estimators. Finally, results predicted by massive online analysis (MOA) will be compared to those real data collected from the following different time. These theoretical predictions with noisy and missing data estimation by simulation, revealing consistency with the real data are illustrated. Deletion mechanism (DEL) outperforms with the lowest average percentage of error.

Copyrights © 2018






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...