International Journal of Electrical and Computer Engineering
Vol 9, No 2: April 2019

Improved optimization of numerical association rule mining using hybrid particle swarm optimization and cauchy distribution

Imam Tahyudin (STMIK AMIKOM Purwokerto)
Hidetaka Nambo (Kanazawa University)



Article Info

Publish Date
01 Apr 2019

Abstract

Particle Swarm Optimization (PSO) has been applied to solve optimization problems in various fields, such as Association Rule Mining (ARM) of numerical problems. However, PSO often becomes trapped in local optima. Consequently, the results do not represent the overall optimum solutions. To address this limitation, this study aims to combine PSO with the Cauchy distribution (PARCD), which is expected to increase the global optimal value of the expanded search space. Furthermore, this study uses multiple objective functions, i.e., support, confidence, comprehensibility, interestingness and amplitude. In addition, the proposed method was evaluated using benchmark datasets, such as the Quake, Basket ball, Body fat, Pollution, and Bolt datasets. Evaluation results were compared to the results obtained by previous studies. The results indicate that the overall values of the objective functions obtained using the proposed PARCD approach are satisfactory.

Copyrights © 2019






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...