International Journal of Electrical and Computer Engineering
Vol 7, No 5: October 2017

A Mixed Binary-Real NSGA II Algorithm Ensuring Both Accuracy and Interpretability of a Neuro-Fuzzy Controller

Faouzi Titel (University of Frères Mentouri Constantine, Algeria)
Khaled Belarbi (Ecole Nationale Polytechnique de Constantine, Algeria)



Article Info

Publish Date
01 Oct 2017

Abstract

In this work, a Neuro-Fuzzy Controller network, called NFC that implements a Mamdani fuzzy inference system is proposed. This network includes neurons able to perform fundamental fuzzy operations. Connections between neurons are weighted through binary and real weights. Then a mixed binary-real Non dominated Sorting Genetic Algorithm II (NSGA II) is used to perform both accuracy and interpretability of the NFC by minimizing two objective functions; one objective relates to the number of rules, for compactness, while the second is the mean square error, for accuracy. In order to preserve interpretability of fuzzy rules during the optimization process, some constraints are imposed. The  approach  is  tested  on  two  control examples:  a single  input  single  output (SISO) system  and  a  multivariable (MIMO) system.

Copyrights © 2017






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...