International Journal of Electrical and Computer Engineering
Vol 8, No 1: February 2018

Design and Implement a Hybrid WebRTC Signalling Mechanism for Unidirectional & Bi-directional Video Conferencing

Naktal Edan (Northampton University)
Ali Al-Sherbaz (Mosul University)
Scott Turner (Northampton University)



Article Info

Publish Date
01 Feb 2018

Abstract

WebRTC (Web Real-Time Communication) is a technology that enables browser-to-browser communication. Therefore, a signalling mechanism must be negotiated to create a connection between peers. The main aim of this paper is to create and implement a WebRTC hybrid signalling mechanism named (WebNSM) for video conferencing based on the Socket.io (API) mechanism and Firefox. WebNSM was designed over a combination of different topologies, such as simplex, star and mesh. Therefore it offers several communications at the same time as one-to-one (unidirectional/bidirectional), one-to-many (unidirectional) and many-to-many (bi-directional) without any downloading or installation. In this paper, WebRTC video conferencing was accomplished via LAN and WAN networks, including the evaluation of resources in WebRTC like bandwidth consumption, CPU performance, memory usage, Quality of Experience (QoE) and maximum links and RTPs calculation. This paper presents a novel signalling mechanism among different users, devices and networks to offer multi-party video conferencing using various topologies at the same time, as well as other typical features such as using the same server, determining room initiator, keeping the communication active even if the initiator or another peer leaves, etc. This scenario highlights the limitations of resources and the use of different topologies for WebRTC video conferencing.

Copyrights © 2018






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...