International Journal of Electrical and Computer Engineering
Vol 10, No 2: April 2020

Myanmar named entity corpus and its use in syllable-based neural named entity recognition

Hsu Myat Mo (University of Computer Studies)
Khin Mar Soe (University of Computer Studies)



Article Info

Publish Date
01 Apr 2020

Abstract

Myanmar language is a low-resource language and this is one of the main reasons why Myanmar Natural Language Processing lagged behind compared to other languages. Currently, there is no publicly available named entity corpus for Myanmar language. As part of this work, a very first manually annotated Named Entity tagged corpus for Myanmar language was developed and proposed to support the evaluation of named entity extraction. At present, our named entity corpus contains approximately 170,000 name entities and 60,000 sentences. This work also contributes the first evaluation of various deep neural network architectures on Myanmar Named Entity Recognition. Experimental results of the 10-fold cross validation revealed that syllable-based neural sequence models without additional feature engineering can give better results compared to baseline CRF model. This work also aims to discover the effectiveness of neural network approaches to textual processing for Myanmar language as well as to promote future research works on this understudied language.

Copyrights © 2020






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...