International Journal of Electrical and Computer Engineering
Vol 8, No 2: April 2018

Towards an accurate Ground-Level Ozone Prediction

Eiman Tamah Alshammari (Kuwait University)



Article Info

Publish Date
01 Apr 2018

Abstract

This paper motivation is to find the most accurate technique to predict the ground level ozone at Al Jahra station, Kuwait. The data on the meteorological variables (air temperature, relative humidity, solar radiation, direction and speed of wind) and concentration of seven pollutants of environment (SO2, NO2, NO, CO2, CO, NMHC, and CH4) were applied to forecast the ozone concentration in atmosphere. In this report, three methods (PLS regression, support vector machine (SVM), and multiple least-square regression) were used to predict ground-level ozone. We used Fifteen parameters to evaluate the performance of methods. Multiple least-square regression, partial least square regression (PLS regression), and SVM using linear and radial kernels were the best performers with MAE (mean absolute error) of 9.17x 10-03, 9.72 x 10-03, 9.64 x 10-03, and 9.12 x 10-03, respectively. SVM with polynomial kernel had MAE of 5.46 x 10-02. These results show that these methods could be used to predict ground-level ozone concentrations at Al Jahra station in Kuwait.

Copyrights © 2018






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...