International Journal of Electrical and Computer Engineering
Vol 8, No 2: April 2018

Tool Use Learning for a Real Robot

Handy Wicaksono (University of New South Wales Petra Christian University)
Claude Sammut (University of New South Wales)



Article Info

Publish Date
01 Apr 2018

Abstract

A robot may need to use a tool to solve a complex problem. Currently, tool use must be pre-programmed by a human. However, this is a difficult task and can be helped if the robot is able to learn how to use a tool by itself. Most of the work in tool use learning by a robot is done using a feature-based representation. Despite many successful results, this representation is limited in the types of tools and tasks that can be handled. Furthermore, the complex relationship between a tool and other world objects cannot be captured easily. Relational learning methods have been proposed to overcome these weaknesses [1, 2]. However, they have only been evaluated in a sensor-less simulation to avoid the complexities and uncertainties of the real world. We present a real world implementation of a relational tool use learning system for a robot. In our experiment, a robot requires around ten examples to learn to use a hook-like tool to pull a cube from a narrow tube.

Copyrights © 2018






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...