International Journal of Electrical and Computer Engineering
Vol 10, No 3: June 2020

Population based optimization algorithms improvement using the predictive particles

M. M. H. Elroby (Ain Shams University)
S. F. Mekhamer (Future University)
H. E. A. Talaat (Future University)
M. A. Moustafa Hassan (Cairo University)



Article Info

Publish Date
01 Jun 2020

Abstract

A new efficient improvement, called Predictive Particle Modification (PPM), is proposed in this paper. This modification makes the particle look to the near area before moving toward the best solution of the group. This modification can be applied to any population algorithm. The basic philosophy of PPM is explained in detail. To evaluate the performance of PPM, it is applied to Particle Swarm Optimization (PSO) algorithm and Teaching Learning Based Optimization (TLBO) algorithm then tested using 23 standard benchmark functions. The effectiveness of these modifications are compared with the other unmodified population optimization algorithms based on the best solution, average solution, and convergence rate.

Copyrights © 2020






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...