IAES International Journal of Robotics and Automation (IJRA)
Vol 4, No 3: September 2015

Adaptive Sliding Mode Controller Design For Attitude Small UAV

Samaneh Amini (Unknown)



Article Info

Publish Date
01 Sep 2015

Abstract

The dynamic of Unmanned Aerial Vehicle (UAV) is nonlinear, strongly coupled, multi-input multi-output (MIMO), and subject to uncertainties and external disturbances.  In this paper, an adaptive sliding mode controller (ASMC) is integrated to design the attitude control system for an inner loop fixed wing UAV. In the proposed scheme, sliding mode control law parameters due to uncertainty are assumed to be unknown and are estimated via adaptation laws. The synthesis of the adaptation laws is based on the positivity and Lyapunov design principle. Navigation outer loop parameters are regulated via PID controllers. Simulation results indicate that the proposed controller design can stabilize the nonlinear system, and it is robust to parametric model uncertainties and external disturbance.

Copyrights © 2015






Journal Info

Abbrev

IJRA

Publisher

Subject

Automotive Engineering Electrical & Electronics Engineering

Description

Robots are becoming part of people's everyday social lives and will increasingly become so. In future years, robots may become caretaker assistants for the elderly, or academic tutors for our children, or medical assistants, day care assistants, or psychological counselors. Robots may become our ...