Jurnal Ilmu Komputer dan Informasi
Vol 10, No 1 (2017): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information

Identifying Medicinal Plant Leaves using Textures and Optimal Colour Spaces Channel

C H Arun (Nesamony Memorial Christian College, Marthandam, India)
D Christopher Durairaj (VHNSN College, Virudhunagar, India)



Article Info

Publish Date
28 Feb 2017

Abstract

This paper presents an automated medicinal plant leaf identification system. The Colour Texture analysis of the leaves is done using the statistical, the Grey Tone Spatial Dependency Matrix(GTSDM) and the Local Binary Pattern(LBP) based features with 20 different  colour spaces(RGB, XYZ, CMY, YIQ, YUV, $YC_{b}C_{r}$, YES, $U^{*}V^{*}W^{*}$, $L^{*}a^{*}b^{*}$, $L^{*}u^{*}v^{*}$, lms, $l\alpha\beta$, $I_{1} I_{2} I_{3}$, HSV, HSI, IHLS, IHS, TSL, LSLM and KLT).  Classification of the medicinal plant is carried out with 70\% of the dataset in training set and 30\% in the test set. The classification performance is analysed with Stochastic Gradient Descent(SGD), kNearest Neighbour(kNN), Support Vector Machines based on Radial basis function kernel(SVM-RBF), Linear Discriminant Analysis(LDA) and Quadratic Discriminant Analysis(QDA) classifiers. Results of classification on a dataset of 250 leaf images belonging to five different species of plants show the identification rate of 98.7 \%. The results certainly show better identification due to the use of YUV, $L^{*}a^{*}b^{*}$ and HSV colour spaces.

Copyrights © 2017






Journal Info

Abbrev

JIKI

Publisher

Subject

Computer Science & IT Library & Information Science

Description

Jurnal Ilmu Komputer dan Informasi is a scientific journal in computer science and information containing the scientific literature on studies of pure and applied research in computer science and information and public review of the development of theory, method and applied sciences related to the ...