Jurnal Ilmu Komputer
Vol 4 No 1: April 2011

STUDI KOMPARASI METODE KLASTERISASI DATA K-MEANS DAN K-HARMONIC MEANS

I Made Widiartha (Jurusan Ilmu Komputer, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Udayana)



Article Info

Publish Date
01 Apr 2011

Abstract

Salah satu metode partitional clustering yang sangat popular adalah K-Means Clustering (KM). Metode ini banyak digunakan karena implementasinya yang sederhana, dapat menangani data dalam jumlah besar dan proses yang relatif singkat. Meskipun demikian jika diperhatikan dari tahapan KM untuk mendapatkan klaster akhir masih terdapat kelemahan. Titik awal pusat klaster pada KM yang ditentukan secara random dan proses pembaharuan titik pusatnya sangat memungkinkan hasil klaster konvergen pada lokal optimal.K-Harmonic Means Clustering (KHM) merupakan algoritma yang diciptakan untuk menyempurnakan KM. Dalam KHM titik pusat diperbaharui dengan memanfaatkan rata-rata harmonik dari seluruh titik data ke seluruh pusat klaster yang ada. Rata-rata harmonik dalam metode KHM digunakan untuk mengurangi permasalahan yang ada pada KM. Pada penelitian ini dilakukan studi komparasi terhadap dua metode klasterisasi yaitu KM dan KHM. Penelitian ini ditujukan untuk melihat bagaimana performa metode KHM dalam menyempurnakan metode KM. Studi komparasi ini menggunakan lima buah data set.

Copyrights © 2011






Journal Info

Abbrev

jik

Publisher

Subject

Computer Science & IT Languange, Linguistic, Communication & Media Library & Information Science

Description

JIK is a peer-reviewed scientific journal published by Informatics Department, Faculty of Mathematics and Natural Science, Udayana University which has been published since 2008. The aim of this journal is to publish high-quality articles dedicated to all aspects of the latest outstanding ...