JURNAL SISTEM INFORMASI BISNIS
Vol 1, No 1 (2011): Volume 1 Nomor 1 Tahun 2011

Perbandingan Kinerja Jaringan Saraf Tiruan Model Backpropagation dan General Regression Neural Network Untuk Mengidentifikasi Jenis Daging Sapi

Nugroho, Nugroho (Unknown)
Sediyono, Eko (Unknown)
Suhartono, Suhartono (Unknown)



Article Info

Publish Date
21 Apr 2011

Abstract

The research on image identification has been conducted to identify the type of beef. The research is aimed to compare the performance of  artificial  neural  network  of  backpropagation  and  general  regression  neural  network  model  in  identifying  the  type  of  meat.  Image management is processed by counting R, G and B value in every meat image, and normalization process is then carried out by obtaining R, G, and B index value which is then converted from RGB model to HSI model to obtain the value of hue, saturation and intensity. The resulting value of image processing will be used as input parameter of training and validation programs. The performance of  G RNN model is more accurate than the backpropagation with accuracy ratio by 51%.Keyword: Identification; Backpropagation; GRNN

Copyrights © 2011






Journal Info

Abbrev

jsinbis

Publisher

Subject

Computer Science & IT Economics, Econometrics & Finance

Description

JSINBIS merupakan jurnal ilmiah dalam bidang Sistem Informasi bisnis fokus pada Business Intelligence. Sistem informasi bisnis didefinisikan sebagai suatu sistem yang mengintegrasikan teknologi informasi, orang dan bisnis. SINBIS membawa fungsi bisnis bersama informasi untuk membangun saluran ...