Jurnal Gaussian
Vol 4, No 4 (2015): Jurnal Gaussian

ESIMASI PARAMETER REGRESI RIDGE MENGGUNAKAN ITERASI HOERL, KENNARD, DAN BALDWIN (HKB) UNTUK PENANGANAN MULTIKOLINIERITAS

Nur Aeniatus Solekakh (Unknown)
Dwi Ispriyansti (Unknown)
Sudarno Sudarno (Unknown)



Article Info

Publish Date
30 Oct 2015

Abstract

Regression analysis is statistical method used to analyze the dependence of respond variables to predictor variable. In multiple linear regression analysis, there are assumptions that must be met, they are normality, homoscedasticity, absence of multicollinearity, and absence of autocorrelation. One of assumption frequently found is multicollinearity. If multicollineraity is exist between predictor variables, then regression analysis with ordinary least square is no longer used. Ridge regression is regression method to handle multicollinearity. The ridge estimator involves adding biasing constant (k) to each diagonal element of  X’X. Biasing constant (k) is determined by Hoerl, Kennard, and Baldwin (HKB) iteration method. This regression can be applied to inflation rate in Indonesia data and the factors that influence, they are BI rate, money supply, and exchange rate of rupiah. Ridge regression analysis, the VIF (Variance Inflation Factor) values for each predictor variables BI rate, money supply, and exchange rate of rupiah are 1.6637, 3.2712, and 4.3309. SinceVIF values are not exceed to 10, then there is no multicollinearity in ridge regression model.Keywords: Inflation,  Multikollinearity, Ridge Regression,  HKB Iteration, VIF

Copyrights © 2015






Journal Info

Abbrev

gaussian

Publisher

Subject

Other

Description

Jurnal Gaussian terbit 4 (empat) kali dalam setahun setiap kali periode wisuda. Jurnal ini memuat tulisan ilmiah tentang hasil-hasil penelitian, kajian ilmiah, analisis dan pemecahan permasalahan yang berkaitan dengan Statistika yang berasal dari skripsi mahasiswa S1 Departemen Statistika FSM ...