Jurnal Gaussian
Vol 3, No 4 (2014): Jurnal Gaussian

KLASIFIKASI WILAYAH DESA-PERDESAAN DAN DESA-PERKOTAAN WILAYAH KABUPATEN SEMARANG DENGAN SUPPORT VECTOR MACHINE (SVM)

Mekar Sekar Sari (Unknown)
Diah Safitri (Unknown)
Sugito Sugito (Unknown)



Article Info

Publish Date
30 Oct 2014

Abstract

This research will be carry out classification based on the status of the rural and urban regions that reflect the differences in characteristics/ conditions between regions in Indonesia with Support Vector Machine (SVM) method. Classification on this issue is working by build separation functions involving the kernel function to map the input data into a higher dimensional space. Sequential Minimal Optimization (SMO) algorithms is used in the training process of data classification of rural and urban regions to get the optimal separation function (hyperplane). To determine the kernel function and parameters according to the data, grid search method combined with the leave-one-out cross-validation method is used. In the classification using SVM, accuracy is obtained, which the best value is 90% using Radial Basis Function (RBF) kernel functions with parameters C=100 dan γ=2-5. Keywords : classification, support vector machine, sequential minimal optimization, grid search, leave-one-out, cross validation, rural, urban

Copyrights © 2014






Journal Info

Abbrev

gaussian

Publisher

Subject

Other

Description

Jurnal Gaussian terbit 4 (empat) kali dalam setahun setiap kali periode wisuda. Jurnal ini memuat tulisan ilmiah tentang hasil-hasil penelitian, kajian ilmiah, analisis dan pemecahan permasalahan yang berkaitan dengan Statistika yang berasal dari skripsi mahasiswa S1 Departemen Statistika FSM ...