Penyakit tuberkulosis merupakan penyakit menular dan mematikan di dunia, bahkan World Health Organization (WHO) mencanangkan sebagai  penyakit kedaruratan dunia (global emergency). Banyak gejala  yang bisa terjadi pada  seseorang yang terjangkit tuberkulosis, dan  untuk menganalisa gejala tersebut bukan hal yang mudah, perlu dilakukan  tes dahak  pada penderita.  Selain itu,  dibutuhkan  juga  sebuah  metode  yang dapat  mempermudah  saat melakukan  analisa dan  menggali informasi pasien dari data rekam medik  yang tersedia. Pada penelitian ini, penulis akan menerapkan metode klasifikasi data mining, yaitu Algoritma C4.5 untuk mendiagnosa penyakit tuberculosis. Berdasarkan hasil pengukuran performa dari model tersebut dengan  menggunakan  metode pengujian Cross Validation, Confusion Matrix dan Kurva ROC, diketahui bahwa algoritma C4.5 memiliki tingkat akurasi sebesar 84,56% dan nilai area under the curva (AUC) sebesar 0,938. Hal ini menunjukkan bahwa model yang dihasilkan termasuk kategori klasifikasi  sangat baik karena memiliki nilai AUC antara 0.90-1.00.
                        
                        
                        
                        
                            
                                Copyrights © 2019