IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 2, No 2: June 2013

A Data Mining Approach for the Detection of Denial of Service Attack

Hoda Waguih (Sadat Academy for Management Sciences)



Article Info

Publish Date
01 Jun 2013

Abstract

Denial of Service (DoS) attacks constitutes one of the major threats and among the hardest security problems currently facing computer networks and particularly the Internet. A DoS attack can easily exhausts the computing and communication resources of its victim within a short period of time. Because of the seriousness of the problem many defense mechanisms have been proposed to fight these attacks. In this paper, we propose an approach that detects DoS attacks using data mining classification techniques. The approach is based on classifying “normal” traffic against “abnormal” traffic in the sense of DoS attacks. The paper investigates and evaluates the performance of J48 decision tree algorithm for the detection of DoS attacks and compares it with two rule based algorithms, namely OneR and Decision table. The selected algorithms were tested with benchmark 1998 DARPA Intrusion Detection data. Our research results show that both Decision tree and rule based classifiers deliver highly accurate results – greater than 99% accuracy – and exhibit high level of overall performance.DOI: http://dx.doi.org/10.11591/ij-ai.v2i2.1937

Copyrights © 2013






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...