IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 5, No 2: June 2016

Development of an Efficient Face Recognition System Based on Linear and Nonlinear Algorithms

Araoluwa Simileolu Filani (Federal University of Technology, Akure, Ondo State, Nigeria.)
Adebayo Olusola Adetunmbi (Federal University of Technology, Akure.)



Article Info

Publish Date
20 Aug 2016

Abstract

This paper presents appearance based methods for face recognition using linear and nonlinear techniques. The linear algorithms used are Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The two nonlinear methods used are the Kernel Principal Components Analysis (KPCA) and Kernel Fisher Analysis (KFA). The linear dimensional reduction projection methods encode pattern information based on second order dependencies. The nonlinear methods are used to handle relationships among three or more pixels. In the final stage, Mahalinobis Cosine (MAHCOS) metric is used to define the similarity measure between two images after they have passed through the corresponding dimensional reduction techniques. The experiment showed that LDA and KFA have the highest performance of 93.33 % from the CMC and ROC results when used with Gabor wavelets. The overall result using 400 images of AT&T database showed that the performance of the linear and nonlinear algorithms can be affected by the number of classes of the images, preprocessing of images, and the number of face images of the test sets used for recognition.

Copyrights © 2016






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...