International Journal of Informatics and Communication Technology (IJ-ICT)
Vol 9, No 1: April 2020

Support vector machine based alzheimer’s disease diagnosis using synchrony features

Nilesh Kulkarni (Shrimati Kashibai Navale College of Engineering)



Article Info

Publish Date
01 Apr 2020

Abstract

Previous research work has highlighted that neuro-signals of Alzheimer’s disease patients are least complex and have low synchronization as compared to that of healthy and normal subjects. The changes in EEG signals of Alzheimer’s subjects start at early stage but are not clinically observed and detected. To detect these abnormalities, three synchrony measures and wavelet-based features have been computed and studied on experimental database. After computing these synchrony measures and wavelet features, it is observed that Phase Synchrony and Coherence based features are able to distinguish between Alzheimer’s disease patients and healthy subjects. Support Vector Machine classifier is used for classification giving 94% accuracy on experimental database used. Combining, these synchrony features and other such relevant features can yield a reliable system for diagnosing the Alzheimer’s disease.

Copyrights © 2020






Journal Info

Abbrev

IJICT

Publisher

Subject

Computer Science & IT

Description

International Journal of Informatics and Communication Technology (IJ-ICT) is a common platform for publishing quality research paper as well as other intellectual outputs. This Journal is published by Institute of Advanced Engineering and Science (IAES) whose aims is to promote the dissemination of ...