International Journal of Informatics and Communication Technology (IJ-ICT)
Vol 6, No 3: December 2017

Density Based Clustering with Integrated One-Class SVM for Noise Reduction

K. Nafees Ahmed (Jamal Mohamed College)
T. Abdul Razak (Jamal Mohamed College)



Article Info

Publish Date
01 Dec 2017

Abstract

Information extraction from data is one of the key necessities for data analysis. Unsupervised nature of data leads to complex computational methods for analysis. This paper presents a density based spatial clustering technique integrated with one-class Support Vector Machine (SVM), a machine learning technique for noise reduction, a modified variant of DBSCAN called Noise Reduced DBSCAN (NRDBSCAN). Analysis of DBSCAN exhibits its major requirement of accurate thresholds, absence of which yields suboptimal results. However, identifying accurate threshold settings is unattainable. Noise is one of the major side-effects of the threshold gap. The proposed work reduces noise by integrating a machine learning classifier into the operation structure of DBSCAN. The Experimental results indicate high homogeneity levels in the clustering process.

Copyrights © 2017






Journal Info

Abbrev

IJICT

Publisher

Subject

Computer Science & IT

Description

International Journal of Informatics and Communication Technology (IJ-ICT) is a common platform for publishing quality research paper as well as other intellectual outputs. This Journal is published by Institute of Advanced Engineering and Science (IAES) whose aims is to promote the dissemination of ...