IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 6, No 3: September 2017

Multi-Operator Genetic Algorithm for Dynamic Optimization Problems

Al-khafaji Amen (University of Technology)



Article Info

Publish Date
01 Sep 2017

Abstract

Maintaining population diversity is the most notable challenge in solving dynamic optimization problems (DOPs). Therefore, the objective of an efficient dynamic optimization algorithm is to track the optimum in these uncertain environments, and to locate the best solution. In this work, we propose a framework that is based on multi operators embedded in genetic algorithms (GA) and these operators are heuristic and arithmetic crossovers operators. The rationale behind this is to address the convergence problem and to maintain the diversity. The performance of the proposed framework is tested on the well-known dynamic optimization functions i.e., OneMax, Plateau, Royal Road and Deceptive. Empirical results show the superiority of the proposed algorithm when compared to state-of-the-art algorithms from the literature.

Copyrights © 2017






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...